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We consider three-dimensional finite-amplitude thermal convection in a fluid layer 
with boundaries of finite conductivity. Busse & Riahi (1980) and Proctor (1981) 
showed that the preferred planform of convection in such a system is a square-cell 
tesselation provided that the boundaries are much poorer conductors than the fluid, 
in contrast to the roll solutions which are obtained for perfectly conducting 
boundaries. We determine here the conductivity of the boundaries a t  which the 
preferred planform changes from roll to square-cell type. We show that, for low- 
Prandtl-number fluids (e.g. mercury), square-cell solutions are realized only when the 
boundaries are almost insulating; while, for high-Prandtl-number fluids (e.g. silicone 
oils), square-cell solutions are stable when the boundaries have conductivity com- 
parable to that of the fluid. 

1. Introduction 
The study of thermal convection in a horizontal layer of fluid heated from below 

has many physical applications, notably in astrophysics and geophysics, as well as 
industrial processes. Typically this phenomenon is modelled by considering the 
boundaries of the fluid as perfect conductors of heat. One can approximate these 
conditions in the laboratory but they are not always relevant in actual applications. 
The extent to which the departure from this ideal affects the nature of the solutions 
is therefore of interest. Jeffreys (1926) investigated the linear stability of a layer whose 
boundaries were perfect insulators, but an error in the velocity boundary conditions 
led him to incorrect conclusions regarding the onset of convection. Sparrow, Goldstein 
& Jonsson (1964) and Hurle, Jakeman & Pike (1967) carried out linear stability 
analyses of the problem of convection between layers that are much poorer 
conductors than the fluid. These authors found that the horizontal wavenumber of 
the most-unstable convection mode tends to zero as the ratio 6 of the thermal 
conductivity of the boundary to  that of the fluid approaches zero. Thus the horizontal 
scale of convection in this case is much larger than the depth of the fluid. Chapman 
& Proctor (1980) have used the disparity of scales to develop an expansion scheme 
for the nonlinear equations in terms of the small horizontal wavenumber, for 
two-dimensional motion. The same method was employed by Proctor (1981) to 
consider three-dimensional convection a t  small values of 5, and Prandtl numbers of 
order unity, with the depths of the boundaries being of the same order as the depth 
of the fluid. He found that, for sufficiently small values of 6, the preferred planform 
of convection is a square cell. A similar result was obtained by Busse & Riahi (1980) 
using the small-amplitude perturbation approach developed by Malkus & Veronis 
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(1958) and Schluter, Lortz & Busse (1965); Busse & Riahi showed also that the 
square-cell convection pattern led to  a higher value of convective heat transport than 
either two-dimensional rolls or three-dimensional hexagonal cells. 

I n  the present paper we use a small-amplitude expansion procedure of similar type 
to determine the value of 5 a t  which the preferred planform of convection changes 
from square cells (which occur for sufficiently small 6) to roll cells (which occur for 
the case of infinite 5). The nonlinear stability problem is reduced to a sequence of 
inhomogeneous boundary-value problems. The solution of this sequence of problems 
is continued until a ‘solvability condition ’ is obtained which yields evolution 
equations describing the nonlinear interaction of rolls and squares for a given value 
of 5. (Hexagonal solutions are not considered, as they are ruled out by the result of 
Busse & Riahi (1980) as well as those of Proctor (1981).) These equations may be 
solved to  find the stable steady planform a t  finite amplitude. A similar method has 
been used for the investigation of convection in a porous medium by Riahi (1983). 

In $2 the problem is formulated. A summary of the linear stability theory for the 
problem is presented in $ 3  and the eigenfunctions as well as the eigenvalues of the 
linear problem are determined. The expansion procedure applied to the nonlinear 
equations is presented in $4, which results in a set of nonlinear 0.d.e.s for the 
amplitude of the horizontal modes. The results of this analysis are given in 95 and 
are discussed in $6. The main result of the paper is that the conductivity ratio a t  
which the changeover occurs depends strongly on the Prandtl number CT. For large 
CT the transition occurs when the conductivities of fluid and boundary are similar, 
while for small CT the critical value Q - a4, except when the solid slabs are infinitely 
thick, in which case cc - C T ~  (see figure 3). 

2. Formulation 
We consider a layer of Boussinesq fluid of depth d located between solid slabs of 

depth $Id, where h is of order unity. The thermal conductivity of the fluid is k and 
of the slabs is k ,  ; the respective thermal diffusivities K and K~ are obtained by dividing 
the conductivity by pcp, where p is the density and c p  the specific heat of the 
appropriate region. All of k, k,, K and K~ are assumed to be constant. Cartesian 
coordinates are chosen with the origin a t  the midpoint of the layer. Gravity g is 
perpendicular to the boundaries of the fluid; the fluid has velocity u, pressure p and 
kinematic viscosity v .  The temperature T is fixed a t  the outer surfaces of the bounding 
slabs, so that the overall temperature difference is AT. Thus when u =  0, the 
temperature gradient in the fluid is 

( 2 . 1 ~ )  

where 6 = k , / k  and To is a reference temperature a t  which the fluid density is po. If 
the temperature perturbation due to any fluid motion is O(x, t )  in the fluid and is 6(x, t )  
in the solid, and a is the coefficient of thermal expansion, then the non-dimensional 
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equations of motion and heat are 

in the fluid, and 

(2.2a) 

( 2 . 2 b )  

v * u  = 0, (2 .2c )  

a6 
-+u*V6 = u*2+V2S,  
at 

( 2 . 3 )  

in the bounding slabs. I n  (2 .2)  and ( 2 . 3 ) ,  2 is the unit vector antiparallel to g. JuJ is 
scaled with K / d ,  p with p, vud2, time t with d2 /u ,  lengths with d and 13, 8 with qd. The 
dimensionless parameters are (T = v / K ,  the Prandtl number of the fluid and R, the 

lgl aqd4 
Rayleigh number, defined by 

R=- (2.4) 
KV 

The velocity vanishes on the boundaries z = ki, and the temperature boundary 
conditions are 

( 2 . 5 )  8 = 0  ( z = k i ( l + h ) ) ,  

6 = 8 ( Z  = ki), (2.6) 

D6 = CD8 ( z  = ki), (2.7) 

where D represents a/az. We seek small- (but finite-)amplitude velocity and 
temperature fields that are periodic in x and y, thus giving the tesselated cellular 
structure often observed in experiments, and determine the preferred planform. 

3. Linear stability theory 
In  the linear problem the velocity u is poloidal and may be written in terms of the 

(3.1) u = v x v x ($2). scalar field $(x, t )  as 

Substituting (3.1) into (2.2) and ignoring nonlinear terms in the resulting equations 
for 4, 6 and 6 leads to a system separable in x, y and t which describes the evolution 
of small disturbances. It is easily shown that if u,  6,  & cc est then s must be real, and 
so the boundary between growing and decaying solutions is given by s = 0. Writing 
$ = f ( x ,  y) h(z ) ,  6 = f ( x ,  y) g(z )  and e" = f ( x ,  y)  g"(z), where Vhf = -a2f, the equations 
for steady fields become 

(D2-a2)g" = 0, (3 .2a)  

0 =Rg-  (D2 h, ( 3 . 2 b )  

0 =a2h + (D2 - a') 9 .  ( 3 . 2 ~ )  

which are to be solved subisct to the appropriate boundary conditions derived from 
(2.5)-(2.7) (see also (4.4) below). The parameter a is thus a horizontal wavenumber 
and should not be confused with the coefficient of thermal expansion defined in $2.  
The critical value of R( = R,,) for linear instability is thus a function of 6, h and a2 
determined as an eigenvalue of (3 .2) .  The minimum value of R, as a function of a 
with 5 and h both fixed has been determined by Proctor (1981) and the results are 
shown in figure 1 for a range of values of C, with h = 1 .  For the purposes of the present 
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FIGIT~E 1 .  Graphs of ( a )  critical Rayleigh number Ro, min and ( b )  critical wavenumber a, as functions 
of 5 for h = 1 (after Proctor 1981). Note that Proctor uses a different scaling for the layer depth. 
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FIGVRE 2 .  Graphs of the eigenfunrtions for the vertical dependence of ( a )  velocity h ( z )  and ( b )  fluid 
temperature q ( z )  for boundaries that are poorly conducting (5 = 0.1, dashed line) and highly 
conducting (5  = 10, solid line). 
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analysis it is convenient also to determine the eigenfunctions g(z)  h(z) ,  and g"(z) 
accurately. This has been achieved using a finite-difference method which determines 
both the eigenvalues and the eigenfunctions of the system (3.2). These calculations 
have been used to verify the results of Proctor (1981), whereby the graph of figure 
1 was reproduced. Figure 2 shows typical eigenfunctions, suitably normalized, of the 
system (3.2) for different values of y. 

4. Nonlinear small-amplitude theory 

a small parameter E as 
Returning to the original equations (2.2) we expand R, u,  8, and p in powers of 

R = R,+e2R2+ ..., (4.1 a )  

u = €U1+€2U2+€3U3+ ..., (4.1 b )  

8 = e8,+e28,+e38,+..., (4.1 c )  

e" = €gl + €2e"z + €3J3 + . . . , (4.1 d )  

p = €pl+"zp2+€3p,+ ... ) (4.1 e )  

and scale the time t as 
a a 

at a7 
- p- - _  

There is no term €R1 in (4.1 a )  since the physics of the problem does not depend on 
the sign of u ;  the scaling of time is the usual one for weakly nonlinear convection 
(see e.g. Malkus & Veronis 1958). We then substitute (4.1) into (2.2) and the boundary 
conditions (2.5)-(2.7) and attempt to solve the sequence of problems that emerges. 
At leading order, this yields the linear problem discussed in $3, with the solution 

(4.3a) 

(4.3 b )  

(4.3c) 

(4.3d) 

where 

and 

V2 H f = -a", (4.4) 

(4.5) 

where R,, min is the minimum value of R, as a function of a, and occurs a t  a = a,. 
I n  order to determine the planform of convection occurring a t  values of R slightly 

above R, i t  is necessary to determine the nature of the evolution of the function f 
with time 7. To do this, we suppose that f takes the form 

f = A ( 7 ) C O S C L c J : + B ( 7 ) C O S O l c y ,  (4.7) 
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and look for the limiting behaviour of A and B. The next order in e yields the 

(4.8a) 
equations 

1 
-U ,*VU,  = - V V ~ ) ~ + R , O , ~ + V ~ U ~ ,  
U 

(4.86) 

(4.8~) 

0 =v.u2 ,  (4.8d) 

and the boundary conditions 

U, = 0. O2 = Q2, DO, = [W, ( Z  = +$), (4.9a) 

G2 = 0 ( 2  = +4(1  + A ) ) .  (4.9b) 

In  order to solve the equations (4.8), we first take 2 - V  x V x of the first of these 
equations, which yields 

(4.10) 

where w2 = u;h, and solve (4.10) along with the remaining equations in (4.8) 
involving O2 and 8,. The terms on the left-hand sides of (4.8) and (4.10) require that 
w2, 8, and Q2 take the form 

1 
-- 2 - V  x V x (u, VU,) = V4w, + R, VH O,, 

0- 

x = (A2  + B2) x ( ~ ) ( z )  + A2 cos 2 a x ~ ( ~ ) ( z )  + B2 cos 2 a y ~ ( ~ ) ( z )  + A B  cos cu cos a y ~ ( ~ ) ( z ) ,  
(4.11) 

where t,he symbol x stands for w2, 0, and G2 respectively and the x@)(z) satisfy a set 
of linear 0.d.e.s determined by substitution of (4.1 1 )  into (4.8)-(4.10). Notably, we 
find that ?fit) = 0 and x@) = due to  the symmetry of the problem. The remaining 
set of 0.d.e.s may be solved numerically on the same finite-difference grid as that used 
for g ( z ) ,  h(z) and g"(z). Also, it may be shown that 2.V x (u;Vu,) = 0 (Schluter et al. 
1965), so that we may write u2 as 

u, = v x v x ($2 2) = ($2 .W $BYZ' -vg $ 2 ) .  (4.12) 

Thus $, may be determined from the form for w, and then i t  is possible to determine 
the x- and y-components of u2 (namely u2 and v 2 )  : 

(4.13a) 

(4.136) 

AB . 
sin ax 00s ay D W ~ ) ,  A2 

u, = --sin2axDw~)-- 
2a 2a 

cos ax  sin ay I)wy). 
B2 AB 

w2 = --sin 2ay Dw?)--- 
2a 20: 

Finally, taking O(e3)  terms in (2.2) yields 

( 4 . 1 4 ~ )  1 1 au, 
- [-+ ul*Vu2 + u2*Vul = -Vp3 + R, O1 2 + V2u, + R, 032,  
(r ar 

-+ a01 (u, .VB, + U,.VO,) = U3' 2 + V2B3, (4.146) 
a7 

(4 .14~)  

0 = v-u,, (4.14d) 
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with the boundary conditions 

U, = 0 ,  19, = B,, DO, = CDB, ( Z  = &+), (4.15a) 

B, = 0 (2 = * + ( l  +A)). (4.15b) 

We see that ( 4 . 1 4 a 4 )  include the time derivatives of u,, 0, and g,,  and so should 
allow determination of the nature of the time variation of the function f .  I n  fact, (4.14) 
and (4.15) constitute an inhomogeneous boundary-value problem, which has a 
solution if and only if the following ‘solvability condition’ holds for all u*, 8* and 
f * that  are solutions of the homogeneous linear problem : 

1 ( u * -  [%+ u,.vu, + u2-  vu, - ~ , ( w * e , )  + R, u1 ve, +u, avo, 
0- a7 

where {. . .} denotes a horizontal average and (. . .) = Jk1 dz{. . .}. The term on the 
right-hand side of (4.16) was obtained by writing Q3 as 

af B - -L(z),  
- a7 

and substituting into ( 4 . 1 4 ~ ) .  
If we write u, as uf) + u(,,), where 

and 
uy) = v x v x ($$%) ( i  = 1 , 2 ) ,  

$f) = A(7)  cos ax h(z),  

(4.17) 

(4.18) 

(4 .19a)  

$i2) = B ( T )  cos ay h(z),  (4.19b) 

and similarly define Of)  and Of), then each of these horizontal modes is a solution 
of the homogeneous problem. Hence we may apply the solvability condition (4.16) 
with u*, O* replaced by uy),O?), i = 1,2, to yield the following two differential 
equations for A and B :  

D2-  = R A-E2A3-F2AB’, (4.20) 

(4.21) 

dA 
a7 
dB 
a7 D2- = R , B - E 2 B 3 - P A ’ B ,  

where the positive quantities D2, E2 and F2 may be calculated numerically as 
integrals of complicated expressions involving the z-dependences of wl, w, etc. The 
stable solutions of (4.20) and (4.21) depend on the relative magnitudes of E2 and P. 
If E2 > P then the stable solutions are 

which corresponds to a square planform. If E2 < F2 the stable solutions are 

(4.22) 

(4.23a) 

(4.233) 
01 

which correspond to roll solutions. 
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FIQURE 3. Graph of 5, as a function of u for h = 1 (solid line) and h + co (dashed line). The stable 
planform is rolls for the region above each curve and square cells below. Note that the singular 
case A+ co obeys a different power law (Q - u3) for small u. 

Thus it is necessary to evaluate the coefficients E2 and F2 as a function of the 
parameters 5, A and (T. In  particular, we desire to fix h and (T, then determine the 
value of 5 at which E2 = F2,  where the stable planform changes from roll solutions 
to squares. 

5. Results 
was divided into a finite-difference grid and the linear 

eigenvalue problem of $3  was solved numerically using the Method of Inverse 
Iteration and then the set of linear 0.d.e.s arising from equations (4.8)-(4.11) was also 
solved using a NAG library finite-difference routine. This procedure enabled evaluation 
of the coefficients E2 and F for specified values of 5, h and (T. It was then possible 
to determine the value of at which E2 and F2 are equal for particular values of h 
and (T. This value (&, say) is the ratio of conductivities at which the planform of the 
convection changes from roll solutions (y > cc) to square-cell solutions (6 < Q). 
Although it is not possible to determine Q analytically, except asymptotically for 
small (T (see below), i t  may be shown, using the analysis of Proctor (1981), that the 

The interval -a < z < 
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FIGURE 4. Graph of Q as a function of h for various values of Prandtl number : 
(a) v = 0.01 ; (b )  1 .O; (c) 100. The dashed lines represent the limit h + CO. 
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ratio Ez/F2+ 1.5 as g + O  for fixed values of u. The calculations described here also 
displayed this limiting behaviour, thus providing a useful check on the numerical 
method. 

Figure 3 shows how Cc changes with Prandtl number, with h = 1 .  At high values 
of r (> 10) the value of 5, becomes independent of u, and appears to approach a 
value very close to unity. For low-Prandtl-number fluids (e.g. mercury, u N 0.025) 
we see from the figure that the value of 5, is much less than unity. We find that 5, N u4 
for small u, with a constant of proportionality approximately equal to 100.4 (for 
h = 1). It is of interest that  the small-g theory of Proctor (1981), that predicts 
square cells for all u of order unity, breaks down precisely when u - @; more 
recent work (Proctor, in preparation) incorporating t,he effects of small r in fact gives 
the same power law with the same constant. 

Figure 4 shows the variation of 6, with the slab thickness A for fluids with Prandtl 
number of 0.01,l and 100. I n  each of these graphs we see that Q becomes independent 
of A as A becomes large. The problem has also been solved for the limit h + co by 
replacing the boundary condition (2.5) with 6+0 as z+ co and the limiting value of 
Cc is shown on each of the graphs of figure 4. Also, for small h we see from the graphs 
that Cc = O(A),  which appears to be the correct behaviour, considering the boundary 
condition for t9 in the linear problem which is 

DBI+: - = fcacoth  (+ah) 81+, 

and since a + 3.11 7, as h + 0 for fixed 5, we see that for small A this reduces to 

D4.t - = T25/W,$ 

so that < / A  is the only relevant parameter. 

6.  Discussion 
I n  $ 5  we have determined the nature of the planform of thermal convection 

between slabs of finite conductivity for a wide range of values of the Prandtl number 
r a n d  slab thickness A. The results indicate that i t  may be possible to observe square-cell 
structures experimentally, but only for fluids with Prandtl number greater than about 
1. For instance, consider the experimental work of Whitehead & Chan (1976), which 
used silicone oil (r 200) bounded by glass slabs whose conductivity was approxi- 
mately 6 times that of the fluid. This type of boundary was required by the 
experimental apparatus, as transmission of light through the bounding slabs was used 
to observe the planform. Other transparent boundaries with lower conductivity than 
glass could be used, and this would reduce the value of 5 to  a value less than 1 .  Should 
such a situation be feasible, then the above theory predicts that  square-cell solutions 
would be observed at Rayleigh numbers slightly above the critical Rayleigh number 
R,, determined by the graph of figure 1 .  Thus the next step in this study should be 
an attempt to observe square-cell planforms in laboratory experiments. 

It should be noted that h need not be the same for top and bottom slabs in order 
to obtain the results presented here, with only quantitative differences in the value 
of 5, being obtained should such an asymmetry occur. The results of Riahi (1983) 
for the porous problem indicate, however, that  if the conductivities k, of the top and 
bottom slabs are sufficiently different, square-cell solutions may not be possible for 
any Y. 
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